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Abstract

We present a recursive function approximation technique that does not require the
storage of the arrival data stream. Our work is motivated by algorithms in stochastic
optimization which require approximating functions in a recursive setting such as a
stochastic approximation algorithm. The unique collection of these features in this
technique is essential for nonlinear modeling of large data sets where the storage of
the data becomes prohibitively expensive and in circumstances where our knowledge
about a given query point increases as new information arrives. The algorithm pre-
sented here provides locally adaptive parametric models (such as linear models). The
local models are updated using recursive least squares and only stores the statistical
representative of the local approximations. The resulting scheme is very fast and mem-
ory efficient without compromising accuracy in comparison to the standard and some
advanced techniques used for functional data analysis in the literature. We motivate
the algorithm using synthetic data and illustrate the algorithm on several real data
sets.

1 Introduction

There are three major classes of function approximation methods: look-up tables, parametric
models (linear or non-linear), and nonparametric models. Parametric regression techniques
(such as linear regression [34]) assume that the underlying structure of the data is known a
priori and is in the span of the regressor function. Due to the simplicity of this approach
it is commonly used for regression. Nonparametric models,[14, 36, 55], do not assume a
specific structure underlying the data. Nonparametric methods use the raw data to build
local approximations of the function, producing a flexible but data-intensive representation.
Although nonparametric models are generally data hungry, the resulting approximation
may be more accurate, [19, 26, 53] and is less sensitive to structural errors arising from a
parametric model. Most nonparametric models require keeping track of all observed data
points, which make function evaluations increasingly expensive as the algorithm progresses,
a serious problem in stochastic search. Regression based on least squares, Lasso regression,
ridge regression, and least absolute deviation all have the same underlying structure as
ordinary least squares, except the objective/penalty terms are slightly modified. In this
work we formulate a problem that is a balance between parametric and nonparametric
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models to benefit from the advantages of both modeling strategies. Semi-parametric models
are discussed in [51].

Our work is motivated by the need to approximate functions within stochastic search
algorithms where new observations arrive recursively. The most classical representation of
the problem is given by

min
x

EF (x, ν),

where E denotes the expectation operator, x is a deterministic parameter and ν is a random
variable. Other applications include approximate dynamic programming, where we need to
approximate expectations of value functions. Since we are unable to compute the expecta-
tion directly, we depend on the use of Monte Carlo samples. We are interested in the class
of algorithms which replaces EF (x, ν) with an approximation F

n
(x) which can be quickly

optimized. As we obtain new information from each iteration, we need a fast and flexible
method for updating the approximation F

n
(x). We require an approximation method that

is more flexible than classical parametric models will offer, but we need a fast, compact
representation to minimize computational overhead.

Bayesian techniques for function approximation or regression are computationally intense
and require storage of all the data points [19]. Updating the model requires revisiting all
the data points in the history. These limitations make these methods impractical in the
circumstances where there is a need to update the model as a stream of new information
arrives and in situations where there is a need for fast algorithms with limited storage space.
In addition these methods have multiple tunable parameters. There is a rich literature on
nonparametric Baysian methods for regression [24]. In spirit, our work is closest to [52]
with a proposed model that mixes over both the covariates and response, and the response
is drawn from a multinomial logistic model. This work handles various response shapes.
Dirichlet process mixtures of generalized linear models (DP-GLM) proposed in [24] is a
generalization of this idea for various response types. Other statistical techniques that are
widely used for regression include regression trees [4], where data is divided into a fixed,
tree-based partitioning and a regression model is fit to data in each leaf of the tree, and
Gaussian processes, which assume the observations arise from a Gaussian process model
with known covariance function. This method does not handle variations in the variance of
the response unless a Dirichlet process mixtures of GP is assumed [46].

Locally Weighted Scatterplot Smoothing (LOWESS), [11, 12, 13], does not require a
global function to represent the underlying function. This procedure produces a model
based on segments of data based on nearest neighborhood. At each point this method
assigns a low-degree polynomial using weighted least squares to the segment of data that
are closest to the point of interest. The weighted least squares assigns more weight to the
points that are closer to the query point. This method is computationally intensive and
keeps track of all the data points. In addition, it does not incorporate an updating method
as new data points arrive.

Locally linear models [15, 16], is a weighted locally linear regression method that has
advantages over regular kernel smoothing regression methods such as [56] and [38]. This
technique builds linear models around each observation and keeps track of all the data
points. In addition this method does not provide a global mathematical formula for the
regression function. This method performs better than spline methods [15].

The multilayer-perceptron and the associated back-propagation algorithm,[57, 50], and
radial basis function [5, 42, 41] have received considerable attention for function approxima-
tion. Back-propagation networks require a lot of training data and training and as a result
are quite slow. One of the main attractions of the radial basis functions (RBFs) is that
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the resulting optimization problem can be broken efficiently into linear and nonlinear sub-
problems. An automatic function approximation technique using RBF that does not need
tuning ad-hoc parameters is proposed in [29]; the multivariate extension to this technique
is proposed in [31]. For a comprehensive treatment on various growing RBF techniques,
see [29] and references therein. The issue of selecting the number of basis functions with
growing and pruning algorithms from a Bayesian prospective is described in [27]. In [1], a
hierarchical full Bayesian model for radial basis functions (RBFs) is proposed. Normalized
RBFs are presented in [32] which perform well for approximation for less number of training
data.

We seek a general purpose approximation method that can approximate a wide range of
functions using a compact representation which can be updated recursively with fast function
evaluations. Toward this goal, we propose a novel recursive and fast approximation scheme
for modeling nonlinear data streams that does not require storage of the data history. The
covariates may be continuous or categorical, but we assume that the response function
is continuous, although not necessarily differentiable. The new method is robust in the
presence of homoscedastic and heteroscedastic noise. Our method automatically determines
the model order for a given data set and produces an analytical formulation describing
the underlying function. Unlike similar algorithms in the literature, our method has one
tunable parameter. Our proposed scheme introduces a cover over the input space to define
local regions. This scheme only stores a statistical representation of data in local regions and
locally approximates the data with a low order polynomial such as a linear model. The local
model parameters are quickly updated using recursive least squares. A nonlinear weighting
system is associated with each local model which determines the contribution of this local
model to the overall model output. The combined effect of the local approximations and the
weights associated to them produces a nonlinear function approximation tool. On the data
sets considered in this study, our new algorithm provides superior computational efficiency,
both in terms of computational time and memory requirements compared to the existing
nonparametric regression methods without loss of accuracy. The test results on various
synthesized and real multivariate data sets are carried out and compared with nonparametric
regression methods in the literature. In this work we have made an attempt to bridge various
fields in statistics, approximation and numerical analysis on function approximation.

The organization of this paper is as follows: Section 2 provides an overview of radial
basis functions and motivates the use of normalized Radial Basis Functions with polynomial
modulated response terms. Section 3 introduces various aspects of the proposed algorithm
including the notion of a cloud cover for the input space, the model building procedure and
the updating roles. This section also provides the stopping criterion for the algorithm and
the procedure to measure the goodness of fit. Section 4 shows the convergence properties
of the proposed algorithm in finite time and asymptotically. Section 5 demonstrates the
performance and robustness of the algorithm using various synthetic and real data sets
with various input dimensions and noise levels. This section provides a comparison of the
new method and the available algorithms in the literature. Section 6 provides concluding
remarks and discusses future work.

2 Normalized Radial Basis Functions

Radial Basis Functions are powerful tools for function approximation, [5, 7, 43]. Over the
years RBFs have been used successfully to solve a wide range of function approximation
problems (see e.g., [3]). RBFs have also been used for global optimization (see e.g., [48, 49,
23, 28]). An RBF expansion is a linear summation of special nonlinear basis functions. In
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general, an RBF is a mapping f : Rn −→ R that is represented by

f(x) =

Nc∑
i=1

αiϕ(∥x− ci∥Wi), (1)

where x is an input pattern, ϕ is the radial basis function centered at location ci, and αi

denotes the weight for the ith RBF. Nc denotes the total number of RBFs. The term Wi

denotes the parameters in the weighted inner product

∥x∥W =
√
xTWx.

The dimensions of the input n and output m are specified by the dimensions of the input-
output pairs. Universal approximation properties of RBFs are established in [39, 40].

Normalized RBFs of the following form were proposed by Moody and Darken, [35],

f(x) =

∑Nc

i=1 αiϕ(∥x− ci∥Wi)∑Nc

i=1 ϕ(∥x− ci∥Wi)
. (2)

Normalized RBFs appear to have advantages over regular RBF, especially in the domain
of pattern classification, see e.g., [6]. In this work it is reported that using normalized RBFs
reduced the order of the model and the robustness of generalization. It has also been reported
that normalized RBFs require less data when training models of dynamical systems, [32].

The polynomial modulation of the normalized RBF expansion leads to the following
expansion,

f(x) =

∑Nc

i=1 pi(x)ϕ(∥x− ci∥Wk
)∑Nc

i=1 ϕ(∥x− ci∥Wi)
, (3)

where pi(x) is assumed to be a low order polynomial such as a linear function (pi(x) =
αix+ βi).

The above notion leads us to the idea of normalized radial basis functions that have a
polynomial response terms. In what follows we provide a fast algorithm that recursively
updates the response terms and the weights associated to them as new data points arrive.
During the training phase the unknown parameters in the model need to be calculated
including the number of the RBFs in the function expansion.

3 On-line Learning Scheme

The goal of our proposed algorithm is to find a mapping f from x ∈ Rn, a vector in n-
dimensional space, to R such that yk = f(xk) as the input-output pair {(xk, yk)} become
available. We expect to have a total of K arrival data points where k ∈ {1, ...,K} with
X = {xk}Kk=1 and Y = {yk}Kk=1 representing the domain and range observable values. We
assume that data arrives as a stream. Throughout the process we would like to find the
parameters associated with the model provided in Equation (3) to find an accurate model
for the data. The observed data might be noisy and we would like to have a model that has
good generalization ability. In this regression framework, the problem is to minimize the
cost function

E(ψ) =
1

2

K∑
k=1

∥ f(xk, ψ)− yk ∥2,
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given the available data points. ψ contains all the parameters, αi, βi, ci,Wi, Nc, that are
used to define f(x) as shown in Equation (3). In this work, the Euclidean inner product is
used for the metric ∥ · ∥ and we use the Gaussian kernel,

ϕ(r) = exp(−r2).

Note that other kernels could be used. For a comprehensive review of RBF kernels used
in the literature and novel skew and compactly supported expansions (see [30]). In what
follows the description of an algorithm in this framework is presented that does not require
the storage of the data stream and locally approximates the underlying functional behavior of
the data. The response model parameters are updated quickly using recursive least squares
and the weights associated to each linear response is updated via statistical techniques. Note
that the model order is also determined in the algorithm.

3.1 A Data Driven Space Cover

The algorithm proposed here works by forming a cover for the domain of the underlying
function f upon arrival of new data points, xk. We define a cover

C = {Ui : i ∈ ∆}

where Ui denotes an indexed family of sets, indexed with the elements of set ∆. C is a cover
of X if X ⊆

∪
i∈∆ Ui. On the arrival of the first data point, x1, a cover element or cloud

U1 is formed with the center on this point and with a distance threshold of DT to form a
ball around xl. When the system receives a new data point x2 with associated y2 value, if
the data point is within distance DT of x1, x2 is assigned to the same cloud; otherwise a
new cloud is created. The same procedure is repeated upon arrival of each data point xk.
A decision is made for the assignment of the new data to a new or existing cloud. If an
existing cloud is assigned, the mean and the variance of this cloud is updated. Otherwise,
a new cloud is created with the new point as its centroid. In the case that the arrival data
is assigned to an existing cloud, the response of the cloud is updated using recursive least
squares.

To check the assignment of a new arrival data point xk, the distance between xk and
the centroids of the cloud, ci with i ∈ {1, ..., Nc} (Nc is the number of clouds or elements in
the cover), is calculated using

Di = ∥xk − ci∥. (4)

Let
I = argmin

i
Di.

Compare DI , with distance threshold DT ; if DI < DT , update the ball indexed with UI .
Otherwise spawn a new cloud UNc+1, according to the previous description. When a new
element is added to the cloud the number of the local balls, Nc is also updated toNc = Nc+1.

The algorithm retains a statistical representation of the data over a cover that is specified
by the data stream and a distance threshold. The distance threshold is the only parameter
in this algorithm that requires tuning. The value of this threshold depends on the variations
of the response values over the domain. The data that is stored in the model are the number
of points in each cloud, Ki, the centroid of each cloud, ci, and the variance in each dimension
of the data in each cloud, Wi. In addition the response coefficients for each cloud are also
stored. Note that the model can be evaluated at any point of its domain after adapting
the model using the new information. As the geometry of the data becomes more complex,
there will be a need for more clouds in the cover to capture this behavior.
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3.2 Recursive Update of the Model

There are two parts in the model that are updated during the training: the response to each
local model associated to a local ball indexed I and an associated weight.

Recursive update for responses. We solve a local least squares problem of the form
min
θI

∥ XkI

I θI − YI ∥22 where XkI

I is a matrix of the form

XkI

I =

1 .. x1

: :
1 .. xkI

 ,
where the vectors x1, ..., xkI are domain values. The vector Y kI

I contains all the associated

range values Y kI

I = [y1, ..., ykI ]. The vector θI = [βI , αI
1, ..., α

I
n] contains all the parameters

for the linear response. The direct solution to this system is θI = (XkI

I

T
XkI

I )−1XkI

I

T
Y kI

I .
After receiving n + 1 data points in a local neighborhood (we refer to this state of the
model as the no-knowledge state), the matrix XkI

I is formed with kI = n+1. The recursive
least squares update, [10], is used to compute the linear response model parameters. For

kI = n + 1, let P kI

I = (XkI

I

T
XkI

I )−1. When a new data point (xk, yk) is assigned to this
local neighborhood, let aT = [xk, 1].

The recursion formula is then:

P kI+1
I = P kI

I −
P kI

I aaTP kI

I

1 + aTP kI

I a
, (5)

θkI+1
I = θkI

I + P kI+1
I a

(
yk − aT θkI

I

)
, (6)

where kI is the recursion index for cloud indexed I. These equations are easily modified to
include a discount factor which puts more weight on recent observations.

Recursive update for the weights. When a new data point (xk, yk) is assigned to the
local neighborhood indexed I, the weights WI associated with an element of cover C, cloud
UI , is also updated. For this purpose the number of data points that have been assigned
to this local ball is updated as kI = kI + 1. The center of the kernels are updated via the
recursion

ckI+1
I = ckI

I +
xk − ckI

I

kI
. (7)

The width or scale of the model in each dimension of the cloud I is updated using the
Welford formula [33]. Initialize Q1 = x1 and S1 = 0. For each additional data point xk

assigned to this cloud, use the recurrence formulas

QkI = QkI−1 + (xk −QkI−1)/kI , (8)

SkI = SkI−1 + (xk −QkI−1)(xk −QkI ). (9)

The kIth estimate of the variance is W 2
I = 1

kI−1S
kI .

3.3 Model Evaluation

This section describes how to compute the approximation F
k
(x) at a query point x. As

shown in equation (3), the output of the proposed model is the weighted average of the
linear responses over the local balls Ui associated to the cover C. In this study a Gaussian

6



kernel, ϕ(r) = exp(−r2), determines the weight of each response function. The widths, Wi,
and the centroids, ci, of the kernels, i ∈ {1, ..., Nc}, were computed recursively as mentioned
in Section 3.2. The model output is formulated as

f(x) =

∑Nc

i=1 ϕ(∥x− ci∥Wi)(αix+ βi)∑Nc

i=1 ϕ(∥x− ci∥Wi
)

. (10)

Nc is the total number of clouds. Note that αix + βi is the least squares solution of the
response over the ith local ball.

The weighted inner product is calculated from the recursive update of the standard
deviation of data in each dimension. For the cases where the standard deviation of the data
along a specific dimension is zero we introduce a penalty term to avoid singularity by writing
Wi =Wi + P , where P is a specified constant. Note that in this study the weight matrices
are diagonal. The summary of the above procedure is presented in DC-RBF Algorithm.

Algorithm DC-RBF algorithm

Input DT

Initialize Nc = 0, k = 1, ∆ = ∅
while xk do
if k = 1 then
c1 = x1, Nc = 1, k1 = 1, ∆ = {1}, form cloud U1

else
compute Di = ∥xk − ci∥ according to Equation (4) for all i ∈ ∆
compute I = argmin

i
Di

if DI < DT then
update cloud UI , kI = kI + 1
if kI ≥ n+ 1 then
update the response parameter, θI , using Equations (5) and (6)
update the cloud centroid, cI , using Equation (7)
update the scale of cloud, WI , using Equations (8) and (9)

else
store xk assigned to cloud I

end if
else
spawn new cloud UNc+1, Nc = Nc + 1, kNc = 1, ∆ = {1, ..., Nc}

end if
end if
k = k + 1

end while
evaluate the model as needed using Equation (10)

3.4 Goodness of Fit and Stopping Criteria

In data modeling one of the major goals is to model data in such a way that the model
does not over or under fit the data that is not used for training but is generated from the
same process as the training data. One general approach to finding such a smooth model to
observed data is known as regularization. Regularization describes the process of fitting a
smooth function through the data set using a modified optimization problem that penalizes
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variation [54]. A standard technique to achieve regularization is via cross-validation [21, 55].
Such methods involve partitioning the data into subsets of training, validation, and testing
data; for details see, e.g., [26]. To determine the tunable parameter of the model proposed
in this work, i.e., the distance threshold, DT , we use t-fold cross validation techniques
[18]. In this scheme, the original data set is randomly partitioned into t subsample sets.
One of the t subsamples is chosen as the validation data for testing the model, and the
remaining subsamples are used as training data. This process is repeated t times with each
of the t subsamples used only once as the validation data. All the t results are averaged
to provide an overall estimate of the error. The advantage of this method over repeated
random sub-sampling is that all observations are used for both training and validation, and
each observation is used for validation exactly once. We have chosen to use five-fold cross
validation. In the first iteration, we mark the first fold as the test set, and use the other
four folds (the training set) to build a model [25]. We record the accuracy of the model on
the testing data set. This procedure is repeated for all five folds, and the mean squared
error (MSE) on the test data sets is computed at each time using,

MSE =
1

L

L∑
l=1

(
f(xl)− yl

)2
, (11)

where L is the size of the testing data set. Over-fitting is avoided by tuning the parameters
to minimize MSE calculated through cross validation, as opposed to minimizing the MSE
of points within the training data set [26].

To increase the number of estimates, one could run the above t-fold cross validation
multiple times. For this purpose the data needs to be reshuffled each round.

To determine the predictive ability of the models we use several measures to show the
accuracy of the predictions. The R2 value is calculated through the following formula:

R2 = 1−
∑L

l=1(y
l − f(xl))2∑L

l=1(y
l − ȳ)2

,

where ȳ = 1
L

∑TL

l yl is the mean of yl. The variance of the data with regards to the true
values is calculated in the numerator. The denominator presents the variance of the model
output with respect to the mean of the outcomes. This measure tells how good the model
is performing in comparison to the case where the mean value is used as the predictor. An
R2 value of 1 indicates an exactly fitted model, while a value of 0 indicates a model that
adds no predictive power. We have also used the notion of Mean Absolute Error to record
the performance of the model. The MAE is defined as following:

MAE =
1

L

L∑
l=1

|f(xl)− yl|. (12)

In the worst case, if the distance threshold is set too high, the proposed method will fit a
single hyperplane to the entire data set.

4 The Convergence Properties of the DC-RBF Algo-
rithm

This section describes facts about the DC-RBF algorithm. Theorems describe the finite
time and asymptotic behavior of this algorithm. Note that the proofs are carried out for the
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algorithm in steady state where there are enough clouds to cover the desired domain of the
function and the clouds have been stabilized. Theorems are provided for both homoscedastic
and heteroscedastic types of noise.

Assume we have
yk = θxk + ϵk, (13)

for k ∈ {1, ...,K}. Vector θ is the parameter that needs to be estimated. The set DK =
{(xk, yk)}, with k ∈ {1, ...,K} denotes the collection of sequentially observed data points.
The error variables, ϵk, are random.

Remark 1. Gauss-Markov theorem [17]: The Gauss-Markov theorem states that in a linear
regression model in which the errors have expectation zero and are uncorrelated and have
equal variances, the lowest possible mean squared error (variance) of the linear unbiased
estimator (BLUE) of the coefficients is given by the ordinary least squares estimator. Actual
errors need not be normal, nor independent and identically distributed (only uncorrelated
and homoscedastic). That is, E(ϵk) = 0, var(ϵk) = σ2 <∞ and cov(ϵk1 , ϵk2) = 0 for k1 ̸= k2
and k1, k2 ∈ {1, ...,K}. The proof of this follows from a contradiction on the mean and
variance of another linear estimator for coefficient θ. An example could be adding another
term to the least squares solution given by (XTX)−1XT . It can be shown that the mean
of this new estimator is not unbiased and it produces a variance that is greater than what
is produced by the mean square error solution, i.e., σ2(XTX)−1.

Note that in our work we use recursive least squares solution on the local clouds as new
data points arrive to that local region.

Lemma 1. For a given DT , if the arrival data points sample an n dimensional ambient
space, the DC-RBF Algorithm will produce null output for a cloud cover that does not
accumulate Mo = n + 1 data points (n is the dimension of the ambient space). Therefore
DT > 0.5||NMo(x

k1) − xk2 || for xk1 , xk2 ∈ X . NMo(x) denotes the Moth nearest neighbor
of point x.

Proof. According to the construction of the model in the DC-RBF algorithm, there is a
need for n + 1 data points to construct a hyperplane from Rn to R. Therefore if DT is
chosen to be a sufficiently small number then there is a chance that the model produces no
output.

Proposition 1. Given DT = diam(X ), assuming the underlying data structure is a hyper-
plane (line in dimension 1) with homoscedastic additive noise the DC-RBF Algorithm is
unbiased asymptotically and in finite time larger than n+ 1. The diameter of domain X is
defined as

diam(X ) = max
1≤k1,k2≤K

||xk1 − xk2 ||.

Proof. Under the hypothesis Hk
I that cloud I has a linear structure, the rank one update of

the recursive least squares solution at each iteration given by equations (5) and (6) provides
the best linear unbiased estimator for the coefficient θ. Note that in this argument the local
iteration counter kI (the kth data point that arrives to cloud I) is the same as the global
counter, kI = k. We offer a proof based on induction. At k = n − 1 the argument is true
since the algorithm saves n− 1 data points to initialize matrix P and the LSE is computed
directly. Let the argument be true for k = m ∈ N, we show that at iteration k = m + 1,
the rank one update solution via the recursive least squares solution is also unbiased. This
follows from the derivation of the recursive least squares via the Sherman-Morrison formula,

(A+ uvT )−1 = A−1 − (A−1u)(vTA−1)

1 + vTA−1u
.

9



Let Gm = XmTXm and am+1T = [xm+1, 1]. Then θm+1 = Gm+1−1
Xm+1TY m+1 =

Gm+1−1
(XmTY m + am+1ym). Notice that XmTY m = GmGm−1XmTY m = Gmθm =

Gm+1θm − am+1am+1T θm. Therefore, θm+1 = θm − Gm+1−1
am+1(am+1T θm − ym). Let

Pm+1 = Gm+1−1
= (Gm + am+1am+1T )−1. Therefore,

θm+1 = θm + Pm+1am+1
(
ym − am+1T

)
.

Hence, at each iteration the estimate is unbiased.
Asymptotically, when the number of data points becomes very large the same induction

is true. Therefore when the number of local iterations k → ∞ we deduce that θk+1 =
θk + P k+1a

(
yk − aT θk

)
leads to an unbiased estimator for θ, according to Remark 1.

Lemma 2. Given DT = diam1(X), assuming the underlying data structure is a hyper-
plane with heteroscedastic or correlated additive noise, the DC-RBF Algorithm is unbiased
asymptotically and in finite time larger than n+ 1.

Proof. The proof follows the proof of Proposition 1 and incorporating the notion of gener-
alized least squares. Generalized least squares assumes the conditional variance of Y given
X is a known or estimated matrix Ω. This matrix is used as the weight in computing the
minimum squared Mahalanobis length, hence, β̂ = (X ′Ω−1X)−1X ′Ω−1Y. Ω rescales the
input data to make it uncorrelated, then the Gauss-Markov theorem is applied. For the
case where the variance of the noise changes, the weight matrix Ω is diagonal and this is a
weighted least squares problem. In this case the weight associated to each point xk ∈ X is
1
σk .

We denote the bias generated by the DC-RBF algorithm at each point of the domain
of function f(x) as B(x) = (f(x) − E[y|x])2. The variance at each point of the domain is
V (x) = 1

K (f(x)− f̄(x))2, where f̄(x) is the average of f(x).

Proposition 2. If the underlying nonlinear functional structure g(x) is Lipschitz continuous
with Lipschitz constant Lc, and the observed data points are drawn from yk = g(xk) + ϵk,

then
∑

x∈X B(x) < Q(Lc, ω1, ω2) = Lc
(ω1−ω2)

2

2 + O. Here DT = diam(X ) is the chosen
distance threshold, and ω1 and ω2 determine the intersecting points of the linear estimation
and the underlying true structure g(x) and O denotes a residual term.

Proof. We assume that the underlying function g(x) is Lipschitz continuous, i.e., there are
restrictions on the variations in the underlying structure. This implies that for every pair of
points on the graph of this function, the absolute value of the slope of the line connecting
them is no greater than a definite real number (Lipschitz constant, Lc(g)). The slope of the

secant line passing through xk1 , xk2 ∈ X is equal to the difference quotient g(xk1 )−g(xk2 )
||xk1−xk2 || < Lc

when xk1 ̸= xk2 . Without loss of generality we only consider the portion of the data that
has an ascent followed by a descent slope in its structure. This could be achieved by the
appropriate choice of DT . To show this result we consider ϕ(.) to be uniform weights. First
we show that the least squares solution to this structure intersects at two points, ω1 and ω2

(see Figure 1(a) for a visual presentation). The proof follows from a contradiction argument.
We denote the residuals of the least squares fit line at iteration k, fk(x) = akx with the

truth function g(x), as ek(x). Note that the residuals at each point are discrete samplings
of the mapping

e : x ∈ [ωl, ωr] → ek(x) ∈ R.
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(a) First order model. (b) Second order model.

Figure 1: The visual demonstration of the regression lines intersection the underlying non-
linear function g(x). In this figure we provide the geometry for the case where the model
consists of a single line, followed by the case where the model consists of two lines.

We assume that the data used for training is given by XI ∈ UI (index I denotes a specific
cloud, in this case the whole data diameter with I = 1.) Note that the global iteration k is
the same as the local index kI . The following analysis is carried out for a given iteration k.
This data is contained in the closed interval x ∈ BI = [ωl, ωr] ∈ UI . In addition, we assume
that both g and f intersect at the origin of the coordinate system, i.e., e(ω1) = 0 and that
e(x) = 0 at x /∈ BI .

Let a+ denote the optimized parameters for the linear estimator f , i.e.,

a+ = argmin
a

∑
xl∈BI

(axl − e(xl))2.

We would like to show that ∃x ∈ [ωl, ωr], such that

a+x− e(x) = 0.

This indicates that the line a+x intersects g(x) at another point. If a+x − e(x) ̸= 0, ∀x ∈
[ωr, ωl], then, without loss of generality, one could assume a+x− e(x) > 0, ∀x ∈ [ωl, ωr].

So, there must be a smallest distance between the optimal hyperplane a+x and the
residual curve e(x). This distance is defined as

α+ = min
x∈[ωl,ωr]

a+x− e(x).

Say this minimum occurs at the point x+. Note that this point x+ may not actually
correspond to a sampled data point xk.

Now consider another hyperplane a∗x which is obtained by scaling the optimal hyper-
plane so that it produces another point of intersection with e(x), i.e.,

a∗x− e(x) = 0

for x ̸= 0 and x ∈ BI . By assumption we have a∗x = κa+x where 0 < κ < 1 so

0 < e(x) ≤ a∗x < a+x

11



for all x ∈ (ωl, ωr). Hence a∗x− e(x) < a+x− e(x) and∑
xl∈[ωl,ωr]

(a∗x− e(xl))2 <
∑

xl∈[ωl,ωr]

(a+x− e(xl))2,

which is a contradiction as we assumed a+ was the optimal solution. Thus, the parameters
a+ could not have been obtained using least squares minimization.

Using the geometry that is produced by the intersection line and the nonlinear geom-
etry, we could contain the residuals within three triangles that is generated by the lines
passing through the intersecting points ω1 and ω2 with slop Lc (see Figure 1(a) for a visual
presentation). We conclude that

∑
xl∈BI

|f(xl)− g(xl)| < Lc[
(ω1 − ω2)

2

2
+ (ωl − ω1)

2 + (ωr − ω2)
2].

Note that BI is an interval that contains the region of interest, diam(BI) > |ω1−ω2|, where
ωr and ωl are the right and left ends of the interval BI , respectively. f

k is the line structure
that is the least squares solution. We present this proof for a single dimension; however,
the higher dimensional argument follows directly by considering a ball BI with a diameter
that covers the intersecting hyperplane with co-dimension 2 at {Ω1, ....,Ωn} with g(x). The
argument follows the volume that is contained between the hyperplane of co-dimension 1
and the polyhedron (Tetrahedra in dimension 2) that contains the nonlinear structure and
has slope equal to Lc for all its faces.

Note that in one dimension we have the notion of a line and a tangent line and the
model output is the weighted sum of piecewise linear approximation to the data. In higher
dimensions we have the notion of a hyperplane with the tangent plane to make a weighted
piecewise linear approximation to the underlying manifold.

Definition 1. Partition of Unity [37]: A partition of unity of a topological space X is a set of
continuous functions, {ρi}i∈∆, from X to the unit interval [0, 1], such that for every point,
x ∈ X , there is a neighborhood of x where all but a finite number of the functions are 0,
and the sum of all the function values at x is 1, i.e.,

∑
i∈∆ ρi(x) = 1.

The notion of partition of unity allows the extension of a local construction to the whole
space. We use the following way to identify our partition of unity. Given any open cover Ui,
i ∈ ∆ (∆ is an index set) of a space, there exists a partition ρi, i ∈ ∆, such that supp ρi ∈ Ui

(supp ρi indicates the support of function ρj). Such a partition is said to be subordinate to
the open cover Ui. Thus we choose to have the supports indexed by the open cover.

If functions ρi are compactly supported, given any open cover Ui, i ∈ ∆, of a space,
there exists a partition ρj , j ∈ Λ indexed over a possibly distinct index set Λ such that each
ρj has compact support and for each j ∈ Λ, supp ρj ∈ Ui for some i ∈ ∆.

Theorem 1. Assuming the underlying data structure, g(x), is nonlinear, and the distance
threshold parameter, DT1 = diamX , the DC-RBF Algorithm produces an upper bound on

the bias denoted by QDT1
(Q is defined in Proposition 2); however if DT2 = diamX

N (N ∈ N,
is a natural number) with N > 1, and upper bound on the bias QDT2

then QDT2
< QDT1

.

Proof. As new data points arrive, more of the true underlying geometry reveals itself. We
begin by posing as a null hypothesis that the underlying structure is described by a line. As
the number of observations increases, we test this hypothesis against alternative hypotheses
that the underlying structure is described by a series of lines over regions. At this stage the
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DC-RBF algorithm given DT = diamX attempts to model the secant line passing through
the curvature (see Figure 1(a) for a visual presentation). What we mean by the secant line
is the regression line passing through the data points associated to cloud indexed I, where at
this stage I = 1. Note that the linear solution produces bias, with an upper bound provided
in Proposition 2.

Similar to Proposition 2, we assume the regression line intersects the underlying nonlinear
structure at points ω1 and ω2 with upper bound on the bias Q. The domain of interest is

BI = [ωl, ωr]. As DT shrinks, (without loss of generality we assume, DT = diamX
2 ), the

space is broken down into smaller sets (see Figure 1(b) for a visual presentation). For
a one dimensional space, this choice of DT breaks down the space into two parts, hence

∆ = {1, 2}. The RBFs, ϕ(r) with
∑

i
ϕ(∥x−ci∥W )∑
i ϕ(∥x−ci∥W ) = 1, form a partition of unity as

provided in Definition 1. This would allow the expansion of each solution to a larger domain
to produce a smooth transition from one local model to the neighboring models. With this
set up, we assume that the two regression lines l1 and l2 intersect at point ωM . According
to Proposition 2, and a uniform choice for kernel ϕ(.), we get the following bounds for the
bias on l1 and l2 denoted by Ql1 and Ql2 , respectively,

Ql1 = Lc[
(ωl11

− ωl12
)2

2
+ (ωl − ωl11

)2 + (ωM − ωl12
)2]

and

Ql2 = Lc[
(ωl21

− ωl22
)2

2
+ (ωM − ωl21

)2 + (ωr − ωl12
)2].

One could simply verify that Ql1 +Ql2 < Q. This would result in reduction of the upper
bound on the bias, hence QDT2

< QDT1
with the cost of having more clouds in the cover

(more parameters in the model) and a corresponding increase in the variance of the model,
VDT1

< VDT2
.

The argument provided here is for one dimension, but with similar arguments made in
Proposition 2, could be generalized to higher dimensions.

Variable subset selection and shrinkage are methods that introduce bias and try to
reduce the variance of the estimate. These methods trade a little bias for a larger reduction
in variance. In practice we choose DT via cross validation among other available methods
that are developed for this purpose.

Theorem 2. Asymptotically, the DC-RBF Algorithm is unbiased for heteroscedastic noise.

Proof. This theorem follows from Theorem 1 and taking into account that in the limit
DT → 0 and K → ∞. Let

fi(x) =

∑
i pi(x)ϕ(∥x− ci∥Wi)∑

i ϕ(∥x− ci∥Wi)
.

As DT → 0, i→ ∞, therefore

lim
i→∞

fi(x) =

∫
pi(x)ϕ(∥x− ci∥Wi)dx∫
ϕ(∥x− ci∥Wi)dx

.

Since DT → 0 leads to Wi → 0, lim
W→0

ϕ(∥x− ci∥W ) = δ(x− ci) where δ(.) is the Dirac delta

function. We then have lim
i→∞

∫
ϕ(∥x − ci∥)dx = 1. Note that K → ∞ guarantees that in

every local ball around a given point in domain x with radius ξ > 0, B(x, ξ) contains at
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least n+1 data points as suggested by Lemma 1, thus lim
i→∞

∫
pi(x)ϕ(∥x− ci∥Wi

)dx = pi(ci)

where x = ci.
Let the true underlying nonlinear function g ∈ C∞ be given by the Taylor expansion,

g(x, a) =
∞∑

n=0

g(n)(x)

n!
(x− a)n,

where g(x, a) denotes the approximation of function g(x) around point a and g(n)(x) denotes
the nth derivative of the function g at point x. If the underlying function g(x) ∈ C1, we
consider a first order linear approximation to function g(x) at each point, i.e., g(x) ≈ f(x) =
g1 (x − a)1. In other words at each point x, the first order approximation is a hyperplane.
In the DC-RBF algorithm if pi(x) is chosen to be a linear function, pi(x) is the tangent line
to each point x. This is true since the limit of the secant line passing through the points xk1

and xk2 when xk1 → xk2 is a tangent line at point xk1 . When xk1 → xk2 , ||xk1 − xk2 || → 0
and in the limit this secant line forms the tangent at the meeting point xj . As a result the

difference quotient f(xk1 )−f(xk2 )
||xk1−xk2 || approaches the slope of the tangent line of g(x) at that xk2 ,

i.e.,

lim
||xk1−xk2 ||→0

f(xk1)− f(xk2)

||xk1 − xk2 ||
= g1(xk2).

This is true as K → ∞. Up to the first order approximation within a ball B(x, ξ) with
ρ > 0, the function is assumed to be linear. According to Remark 1, and considering the
fact that the variation of the noise within B(x, ξ) is negligible, the solution is BLUE. Since
this is true for every point in domain X, the DC-RBF algorithm is therefore asymptotically
unbiased.

5 The Empirical Results

Here we demonstrate the performance of the algorithm on a variety of synthesized and real
data sets. The data sets have distinct features in terms of input dimension, complexity of the
response function as well as the noise content. Note that the algorithm provides a functional
representation of the underlying data. The first three synthetic examples concentrate on
the performance and discussions on DC-RBF algorithm followed by two real examples with
comparisons to other statistical techniques.

5.1 Synthesized Data Sets

In this section, the performance of the DC-RBF algorithm on modeling the newsvender
problem is shown. In the newsvendor problem, a newsvendor is trying to determine how
many units of an item x to stock. The stocking cost and selling price for the item is c and
p, respectively. One could assume an arbitrary distribution on demand D. The expected
profit is given by

F (x) = E [pmin(x,D)]− cx.

This problem poses a challenge to on-line data analysis due to the special behavior in the
function around the optimal solution which is highly dependent on the characteristics of
a dataset. A data set composed of an oscillatory behavior with varying noise of the form
y = sin(πx4 ) + 0.1xN(0, 1) is also used in this section. In this problem the challenge is to
discover the underlying nonlinear function while the observations are highly corrupted with
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various levels of noise. The last synthesized data set provides an opportunity to approximate
a two dimensional surface from a data set composed of noisy observation of a saddle shape
surface given by z = x2 − y2 +N(0,

√
5).

One dimensional newsvender data set. Figure 2 describes the experimental setup
and the model output for two different distributions on D. Figure 2 shows the training,
testing and model output for each case. The specification of the algorithm for both prob-
lems is identical. The number and position of training and testing data is the same in
both experiments. We employ our function approximation technique to find the maximum
number of units to stock. The MSE value for the first experiment is 107.39 with a model
that has three clouds. The second experiment has resulted in a model with three clouds
with MSE value of 426.63. We observe that the maximum stocking point is well identified
in both experiments. Note that the algorithm learns the underlying functional behavior of
the given data set within the scope that is determined by the radius of the local balls. The
model generalizes well within local regions.

The underlying function forms a shape that is not in the span of a polynomial of degree
p, in particular for the problems where D has low variance (making this a more challenging
problem). Therefore parametric methods do not perform well, especially given the fact that
the basis functions of a parametric model must be known a priori. For the noisy data set the
interpolation methods such as cubic splines (despite the regression schemes) do not perform
well and often result in over-fitting the data. Interpolation techniques also require more data
points to produce an accurate response, see e.g., [55]. We observe that, in this experiment,
our method outperforms kernel smoothing regression both in noisy and no noise data sets.
The poor performance of kernel smoothing in this experiment is due to its local averaging
property that tends to under-fit the function around the local extreme points. Therefore,
the predicted value of the maximum is worse than the true value. In addition, this technique
requires storage of the history of data points and does not provide an analytical form for
the underlying function.

We have tested our algorithm on various other single dimensional noisy data sets and
we have observed a similar conclusion. Therefore we only report on a newsvender data set
which plays a key role in resource management and produces an interesting case for data
analysis due to the shape around the optimum result. Our method has the lowest or a very
comparable mean squared error compared to the techniques described in this section and
captures well the local structure of the signal.

An oscillatory data set with varying additive noise. To demonstrate the per-
formance of the algorithm on signals that have varying additive noise, we have tested the
method on a synthesized data set that is produced by y = sin(πx4 )+0.1xN(0, 1). Figure 3(a)
shows the noisy and noise free data sets. The challenge is to find the underlying function
sin(.) from the noisy input signal with large variation in the variance of noise. Figure 3(b)
shows the testing data set and the model output. One could observe that the proposed
algorithm has performed well in recovering the underlying function with only five clouds in
the function expansion. The final MSE is 0.8 and MAE 0.62. The distance threshold is 3.

Two dimensional saddle data set. A data set generated from z = x2−y2+N(0,
√
5)

which produces a noisy saddle shape is used in this study. Figure 4 shows the data points
that are used for training and testing. Figure 5 demonstrates four major snapshots of the
model making process. Each panel in this figure shows the starting point of adding a new
cloud when each cloud receives three data points. The first data point that activates the
cloud is also plotted in each panel. At first there is not enough points to form a model. Then,
as new data points arrive the first cloud is formed, as shown in Figure 5(a). Depending on
the spatial location of the arrival points the first cloud might get updated or the second
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(a) D ∼ (50, 60).
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(b) D ∼ (30, 70).

Figure 2: Newsvendor data set is shown that is generated using [p min(x,D)] − cx. The
training and testing data sets consist of 24 and 36 data points, respectively. To generate this
data set, c = 50, p = 60, and D is a random uniform integer between 50 and 60 for panel (a)
and between 30 and 70 for panel (b). Inventory stock levels x were sampled from a random
uniform integer distribution from 20 to 80. The MSE and MAE of the model output on
test data set in the original scale of the data are 33847 and 107.39 for panel (a) and 453470
and 426.63, for panel (b), respectively. The model distance threshold is 15. There are three
clouds in each model.

cloud might get formed. The same process repeats till the fourth cloud of the model is
shaped as shown in panel (d) of Figure 5. Finally, Figure 6 shows the final model after
presenting 125 data points in the presence of the 100 testing points.

We observe that the accuracy of the model is similar to LOESS. However, unlike LOESS
our method does not require the storage of the data points and has superior speed. In
addition, DC-RBF provides an analytical formulation for the underlying structure. Our test
results on other synthesized surfaces provide the same conclusion. For further elaboration
on the LOESS method its comparison to DC-RBF, see Section 6.

5.2 Real Benchmark Data Sets and Comparison Results

In this section we show the performance of the proposed method on two real data sets and
compare results to the related methods in the literature in terms of accuracy, speed, batch
v.s. on-line and the requirement of storing the previous data points. We select two data sets
with continuous response values. The selected data sets represent regression challenges on
noise heteroscedasticity and moderate dimensionality. We compare our results to techniques
that we find are the closest to the spirit of our work.

The list of the benchmark algorithms is as following:

• Dirichlet Process Mixtures of Generalized Linear Models (DP-GLM): A
Bayesian nonparametric method that finds a global model of the joint input-response
pair distribution through a mixture of local generalized linear models, [24].

• Ordinary Least Squares (OLS): A parametric method that is widely used for
data fitting problems and often provides a reasonable fit to data. In this study
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(b) Model output.

Figure 3: Panel (a) shows a data set of 200 data points in the interval [0, 16] is generated
with y = sin(πx4 ) + 0.1xN(0, 1). Both noise free and noisy data are shown in this figure.
Panel (b) shows the training, testing data set each with 100 points and the model output.
In this graph the data is re-scaled using the STD of the whole data.

[1, X1, ..., Xn]
T has been chosen as basis functions (Xi, i ∈ {1, ..., n} denotes the i

th coordinate).

• CART: This is a nonparametric tree regression method [4]. This method is available
in the MATLAB function classregtree.

• Bayesian CART: A tree regression model with a prior over tree size [8], implemented
in R with the tgp package.

• Bayesian Treed Linear Model: A tree regression model with a prior over tree size
and a linear model in each of the leaves [9], implemented in R with the tgp package.

• Gaussian Processes (GP): A nonparametric method for continuous inputs and
responses [47]. This algorithm is available in MATLAB with program name gpml.

• Treed Gaussian Processes: A tree regression model with a prior over tree size and
a GP on each leaf node [22]; This is implemented in R with the tgp package.

DP-GLM, [24], is closest to the spirit of our work, although algorithmicly they are quite
distinct. So we have most emphasized on this comparison in this work and used results
reported in [24] on the performance of other competing methods in the literature. DP-GLM
was designed for batch applications and is much slower and data intensive than DC-RBF
method proposed in this paper.

Cosmic Microwave Background (CMB) [2]. This data set maps positive integers
x = 1, 2, ..., 899, called “multipole moments,” to power spectrum Cl. It consists of 899
observations, shown in Figure 7. This data set is highly nonlinear and heteroscedastic.
These features make this data set an interesting benchmark choice. The underlying function
relates continuous domains values to their corresponding continuous responses.

Figure 8 shows the test data set and the model output. The distance threshold parameter
value, 95, is determined using 5-fold cross validation. The output is a continuous plot of a
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Figure 4: Saddle data set generated by z = x2 − y2 + N(0,
√
5). There are 125 training

and 100 testing data points over the domain x ∈ [−3, 3] × [−3, 3]. This nonlinear and
noisy example provides an interesting problems to show the performance of our proposed
algorithm.
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(b) Second cloud.
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(d) Fourth cloud.

Figure 5: The model behavior at the starting point of adding a new cloud to the model.
The final model consists of four clouds.
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Figure 6: The final model output after receiving 125 training points is shown in the presence
of 100 testing points. The final model with four clouds has MSE of 4.49 with MAE of 1.7.
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Figure 7: This plot shows the CMB data set that consists of 899 data points.

parsimonious model with only seven clouds. The MSE and MAE for the testing data are
0.7810 and 0.4546 respectively. The result shows that the method is capable of handling the
heteroscedasticity in this data set quite well. The comparison between DC-RBF method
and the six methods described above are summarized in table 1. In terms of error rates our
proposed algorithm slightly under-performs on the smaller data sets compared to the DP-
GLM, although with a dramatic reduction in CPU time. However it is quite competitive on
larger data sets. Note that even though our proposed algorithm is in the same algorithmic
class as DP-GLM, it only uses a given data point once and does not require storage of the
data points. In contrast, DP-GLM is a batch algorithm and relies on exhaustive computation
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to compute a model and requires all the history to rebuild the model once a new data point
arrives. The new method has one adjustable hyper-parameter, while the DP-GLM has
multiple hyper-parameters to tune. The DC-RBF method is orders of magnitude faster,
since DP-GLM requires the use of Markov Chain Monte Carlo methods to reoptimize the
clustering as each data point is added, where as DC-RBF updates instantly.
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Figure 8: The training and testing data set and the model output for the CMB data set is
shown in this plot. The training data set consists of 500 points and the remaining 499 are
used for testing. Note that the range of the signal is re-scaled by the standard deviation of
the total input data.

Concrete Compressive Strength (CCS) [58] The CCS data set provides a mapping
from an eight dimensional input space to a continuous output. This data set has low
noise and variance. The eight continuous input dimensions are: the components cement,
blast furnace slag, fly ash, water, super-plasticizer, coarse aggregate and fine aggregate, all
measured in kg per m3, and the age of the mixture in days. The response is the compressive
strength of the resulting concrete. There are 1, 030 observations in this data set. The
challenge working with this data set is to find a continuous mapping that represents the
input-output relationship well in this multi-dimensional data.

Similar to the experiment using the CMB data set, we have summarized the comparison
results for this data set in Table 2. We observe that as the number of observations increase
the performs of the new method enhances due to the nature of our design that requires
certain number of data points to activate a cloud. From the Table 2, we see that in terms of
error our method remains competitive with DP-GLM, which is computationally much more
demanding.

6 Concluding Remarks

We propose a fast, recursive, function approximation method which avoids the need to store
the complete history of data (typical of nonparametric methods) or the specification of
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Training Set Size 30 50 100 250 500 30 50 100 250 500

Method Mean Absolute Error Mean Square Error
DP-GLM 0.58 0.51 0.49 0.48 0.45 1.00 0.94 0.91 0.94 0.83

Bayesian CART 0.66 0.64 0.54 0.50 0.47 1.04 1.01 0.93 0.94 0.84
Bayesian TLM 0.64 0.52 0.49 0.48 0.46 1.10 0.95 0.93 0.95 0.85

Gaussian Process 0.55 0.53 0.50 0.51 0.47 1.06 0.97 0.93 0.96 0.85
Treed GP 0.52 0.49 0.48 0.48 0.46 1.03 0.95 0.95 0.96 0.89

Linear Regression 0.66 0.65 0.63 0.65 0.63 1.08 1.04 1.01 1.04 0.96
CART 0.62 0.60 0.60 0.56 0.56 1.45 1.34 1.43 1.29 1.41

DC-RBF 0.61 0.53 0.49 0.47 0.46 1.40 1.13 0.98 0.91 0.85

Table 1: This table summarizes the performance of various regression techniques on CMB
data set. The MSEs and MAEs on different sizes of testing data sets are reported in this
table. The presented results are the mean of the performances for various methods for
different permutations of data points selected for training and testing data sets. For DC-
RBF, the hyper-parameter DT is kept fixed for a given data set size. The hyper-parameter
could be identified using for example a 5-fold cross validation or another suitable technique.
The hyper parameters of the other techniques are calculated by sweeping over a set of
candidate parameters that varies by 3 to 5 orders of magnitude, then the parameter that
does the best on the training set is chosen, these number are reported from [24].

Training Set Size 30 50 100 250 500 30 50 100 250 500

Method Mean Absolute Error Mean Square Error
DP-GLM 0.54 0.50 0.45 0.42 0.40 0.47 0.41 0.33 0.28 0.27

Bayesian CART 0.78 0.72 0.63 0.55 0.54 0.95 0.80 0.61 0.49 0.46
Bayesian TLM 1.08 0.95 0.60 0.35 1.10 7.85 9.56 4.28 0.26 1,232

Gaussian Process 0.53 0.52 0.38 0.31 0.26 0.49 0.45 0.26 0.18 0.14
Treed GP 0.73 0.40 0.47 0.28 0.22 1.40 0.30 3.40 0.20 0.11

Linear Regression 0.61 0.56 0.51 0.50 0.50 0.66 0.50 0.43 0.41 0.40
CART 0.72 0.62 0.52 0.43 0.34 0.87 0.65 0.46 0.33 0.23

DC-RBF 0.57 0.54 0.51 0.47 0.39 0.54 0.50 0.44 0.40 0.29

Table 2: The performance table for CCS data. In this table the results are reported in terms
of Mean Square Error and Mean Absolute Error for various competing methods, including
DP-GLM. The experimental set up here is the same as we described for CMB data set.

hyperparameters for Bayesian priors. The method assigns locally parametric models (such
as linear polynomials) for regions of the covariate space that are created dynamically from
the data without the need for prespecified classification schemes. A weighting scheme is
associated to each locally linear approximation using normalized RBF. Each local model is
updated recursively with the arrival of each new observation, which is then used to update
the cloud representation before the data is discarded.

The new method is robust in the presence of homoscedastic and heteroscedastic noise.
Our method automatically determines the model order for a given dataset (one of the most
challenging tasks in nonlinear function approximation). Unlike similar algorithms in the
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literature, our method has only one tunable parameter and is asymptotically unbiased.
Table 3 provides a comparison of different statistical methods that we have considered in

this paper. This table brings together features such as speed, complexity of implementation,
storage requirement, recursivity, the type of noise that can be handled and the number of
tunable parameters.

More specifically, in contrast to DP-GLM, DC-RBF offers orders of magnitude faster
updates, does not require as many tunable parameters, avoids the complexity of its imple-
mentation, and can be updated recursively without need for storing the data history.

The power of DC-RBF lies in its adaptibility to approximate complex surfaces, com-
pactness in model representation, parsimony in model specification, recursivity and speed.
Parametric methods will always suffer from the need to tune the choice of basis functions.
Nonparametric methods require the storage of the entire history which complicates function
computations in stochastic optimization settings (our motivating application). DP-GLM,
which fits local polynomial approximations to clusters, is extremely slow and cannot be
adapted to a recursive setting. Gaussian process models can work very well, but only in
particular problem classes with continuous covariates and they also require more tunable
parameters. Gaussian process models, as well as techniques such as splines, also introduce
the risk of overfitting.

Our experience with Bayesian methods (in particular, in the development of DP-GLM,
in which the second author was a developer) is that they are quite sensitive to the tuning
of the hyperparameters that make up the priors. This introduces an undesirable degree of
human intervention that is likely to limit their usefulness in black box stochastic optimization
algorithms.

DC-RBF appears to satisfy most of our needs for approximating continuous functions in
the recursive setting of stochastic optimization. It starts with a linear, parametric model,
and adds clouds only as the range of covariates expand. It can adapt to quite general
surfaces, and requires only that we retain history in the form of a relatively compact set of
clouds. It does not require the specification of basis functions (we believe the local linear
models should be kept very simple), and offers fast, recursive updating algorithms.

Performance in terms of solution quality is always going to be an evaluation limited to
a specific set of experimental tests. We used the newsvendor setting to demonstrate the
ability of DC-RBF to adapt to both a sharp, nondifferentiable function (which is difficult
to approximate using low-order polynomials) and a smooth function. The method works
well, theoretically and experimentally, in the presence of heteroscedastic noise. Finally, it
appears to be competitive against much more complex algorithms such as DP-GLM.

DC-RBF does introduce the need to tune a distance threshold parameter DT . This is
not a minor requirement, as the choice of DT captures the overall behavior of the surface.
We suspect the choice of DT will generally become apparent within any specific problem
class. We also doubt that this method would be effective for high dimensional applications
(say, more than 10 or 20 covariates).

We believe that there are opportunities to build on this basic idea to overcome the
need to specify DT . A natural extension is to specify a dictionary of possible values of DT

(possibly on a log scale), which can be viewed as models at different levels of granularity.
We might then estimate a family of approximations, one for each DT , which can then be
combined using a hierarchical weighting scheme such as that proposed in [20].

We have shown numerical results on synthetic and real data which demonstrate the suc-
cess of the algorithm for multiple dimensional function approximation. Despite a model
generated by DP-GLM which remains biased toward the early observations, (this form of
modeling may not serve well in applications that provide update for the existing informa-
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tion such as ADP), DC-RBF could adapt very quickly to new information. This type of
approximation tool is specially useful for value function approximation in the context of
Approximate Dynamic Programming, where there is a stream of exogenous information
contributing to the system dynamics. We intend to use the approximate technique for
value function approximation in the context of Approximate dynamic programming, [44]
and optimal learning [45] for energy resource allocation under uncertainty.

Algorithm Spd Comp Stor Rec Noise TP
DP-GLM V C A N HE F

Bayesian CART V C A N HO F
Bayesian TLM F I A N HO F

Gaussian Process V C A N HO F
Treed GP V C A N HO F

Linear Regression U S N Y HO N
CART F I A N HO F

Kernel Regression F I A N HO F
Locally Linear F I A Y HO F

LOWESS F I A N HO F
DC-RBF U S SR Y HE O

Table 3: The benchmark table to compare various statistical function approximation tech-
niques in terms of overall Speed in terms of model Updating and model evaluation (Ultra
fast, Fast, Very slow), Complexity of implementation (Complex, Intermediate, Simple),
Storage requirement (All the history, Statistical Representation, None), Recursivity (Yes,
No), Noise type they could handle (HEteroscedasticity, HOmoscedasticity), the number of
Tunable Parameters, (None, One, Few).
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